GeneralizedLogisticModel
GeneralizedLogisticModel
¶
Generalized logistic model for fitting sigmoidal curves to data.
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
|
X: np.ndarray | None
property
writable
¶
Set the predictor variables for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
The input data matrix. Must be two dimensional even if there is only one predictor. |
required |
Returns:
Type | Description |
---|---|
The input data matrix. |
Raises:
Type | Description |
---|---|
TypeError
|
if X is not a NumPy array. |
ValueError
|
if X is not 2D. |
ValueError
|
if the number of columns in X does not match the length of the inflection point or coefficients. |
coefficients: np.ndarray | None
property
writable
¶
Set the coefficients for the model. This parameter can be inferred by fit()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
The coefficients of the sigmoid function. |
required |
Returns:
Type | Description |
---|---|
The coefficients of the sigmoid function. |
Raises:
Type | Description |
---|---|
TypeError
|
if the coefficients are not a NumPy array or a list. |
ValueError
|
if the length of the coefficients does not match the number of columns in X or the number of inflection points. |
cov: np.ndarray | None
property
writable
¶
The covariance matrix of the model parameters. This parameter can be inferred by
fit()
Returns:
Type | Description |
---|---|
The covariance matrix of the model parameters. |
Raises:
Type | Description |
---|---|
TypeError
|
if the covariance matrix is not a NumPy array. |
df: int
property
¶
The residual degrees of freedom of the model.
Residual degrees of freedom = number of observations - number of parameters
Returns:
Type | Description |
---|---|
The residual degrees of freedom of the model. |
Raises:
Type | Description |
---|---|
AssertionError
|
if the input data matrix X is not available. |
jacobian: np.ndarray | None
property
writable
¶
The Jacobian matrix of the model. This parameter can be inferred by fit()
Returns:
Type | Description |
---|---|
The Jacobian matrix of the model. |
Raises:
Type | Description |
---|---|
TypeError
|
if the Jacobian matrix is not a NumPy array. |
left_asymptote: float | None
property
writable
¶
The lower asymptote of the sigmoid function. This parameter can be inferred by
fit()
Returns:
Type | Description |
---|---|
The lower asymptote of the sigmoid function. |
Raises:
Type | Description |
---|---|
TypeError
|
if the lower asymptote is not a real number. |
ValueError
|
if the lower asymptote is greater than the upper asymptote. |
llf: float | None
property
¶
The log-likelihood of the model. Note that this assumes Gaussian residuals.
Returns:
Type | Description |
---|---|
The log-likelihood of the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the residuals or y are not available. |
mse: float | None
property
¶
The mean squared error of the model.
Returns:
Type | Description |
---|---|
The mean squared error of the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the residuals are not available. |
n_params: int
property
¶
The number of parameters in the model.
Returns:
Type | Description |
---|---|
The number of parameters in the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the coefficients are not available. |
r_squared: float | None
property
¶
The variance explained by the model.
Returns:
Type | Description |
---|---|
The variance explained by the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
|
residuals: np.ndarray | None
property
writable
¶
The residuals of the model. This parameter can be inferred by fit()
Returns:
Type | Description |
---|---|
The residuals of the model. |
Raises:
Type | Description |
---|---|
TypeError
|
if the residuals are not a NumPy array. |
right_asymptote: float | None
property
writable
¶
Set the upper asymptote for the model. This parameter can be inferred by fit()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
The upper asymptote of the sigmoid function. |
required |
Returns:
Type | Description |
---|---|
The upper asymptote of the sigmoid function. |
Raises:
Type | Description |
---|---|
TypeError
|
if the upper asymptote is not a real number. |
ValueError
|
if the upper asymptote is less than the lower asymptote. |
rss: float | None
property
¶
The residual sum of squares of the model.
Returns:
Type | Description |
---|---|
The residual sum of squares of the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the residuals are not available. |
tss: float | None
property
¶
The total sum of squares of the model.
Returns:
Type | Description |
---|---|
The total sum of squares of the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the output data y is not available. |
y: np.ndarray | None
property
writable
¶
Set the response variable for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
The observed output data. |
required |
Returns:
Type | Description |
---|---|
The observed output data. |
Raises:
Type | Description |
---|---|
TypeError
|
if y is not a NumPy array or a list. |
ValueError
|
if the number of rows in y does not match the number of rows in X. |
__init__()
¶
Initialize the generalized logistic model.
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
22 23 24 25 26 27 28 29 30 31 |
|
aic()
¶
Calculate the Akaike Information Criterion (AIC) for the model.
Returns:
Type | Description |
---|---|
float | None
|
The Akaike Information Criterion (AIC) for the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the log-likelihood is not available. |
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
340 341 342 343 344 345 346 347 348 349 350 351 |
|
bic()
¶
Calculate the Bayesian Information Criterion (BIC) for the model.
Returns:
Type | Description |
---|---|
float | None
|
The Bayesian Information Criterion (BIC) for the model. |
Raises:
Type | Description |
---|---|
AttributeError
|
if the log-likelihood or X is not available. |
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
fit(**kwargs)
¶
Fit the model to the data. This uses scipy.optimize.curve_fit
to optimize the
model parameters. See
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kwargs |
Additional keyword arguments to pass to |
{}
|
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
model(y, X)
¶
Set the predictor and response variables for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
The input data matrix. Must be two dimensional even if there is only one predictor. |
required |
y |
ndarray
|
The observed output data. |
required |
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
389 390 391 392 393 394 395 396 397 398 399 |
|
plot(plots_to_display=[1, 2, 3, 4], interactor_diagnostic=False)
¶
Diagnostic plots for the generalized logistic model.
This function can generate various plots including:
- 1: Normal Q-Q plot.
- Optionally: Interactor Diagnostic Plot when
interactor_diagnostic
is True.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
plots_to_display |
list[int]
|
A list of integers (1 to 4) indicating which plots to show. |
[1, 2, 3, 4]
|
interactor_diagnostic |
bool
|
Boolean to include interactor diagnostic plot (default False). |
False
|
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
|
predict(X)
¶
Make predictions using the generalized logistic model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
Input data matrix |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Predictions based on the learned model parameters |
Raises:
Type | Description |
---|---|
ValueError
|
if the model has not been fitted. |
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
summary()
¶
Print a summary of the generalized logistic model.
This method automatically performs LRT comparisons between the full model and models with one less predictor in each iteration.
Raises:
Type | Description |
---|---|
ValueError
|
if the model has not been fitted. |
Source code in yeastdnnexplorer/ml_models/GeneralizedLogisticModel.py
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|