Skip to content

DataCard

tfbpapi.datacard.DataCard

Parser and explorer for HuggingFace dataset metadata.

The parsed structure uses Pydantic models with extra="allow" to accept arbitrary fields (like experimental_conditions) without requiring code changes.

Key capabilities: - Parse dataset card YAML into structured objects - Navigate experimental conditions at 3 levels (top/config/field) - Explore field definitions and roles - Extract metadata schema for table design - Discover metadata relationships

Example: >>> card = DataCard(“BrentLab/harbison_2004”) >>> # Use context manager for config exploration >>> with card.config(“harbison_2004”) as cfg: … # Get all experimental conditions … conds = cfg.experimental_conditions() … # Get condition fields with definitions … fields = cfg.condition_fields() … # Drill down into specific field … for name, info in fields.items(): … for value, definition in info[‘definitions’].items(): … print(f”{name}={value}: {definition}”)

Example (legacy API still supported): >>> card = DataCard(“BrentLab/harbison_2004”) >>> conditions = card.get_experimental_conditions(“harbison_2004”) >>> defs = card.get_field_definitions(“harbison_2004”, “condition”)

Source code in tfbpapi/datacard.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
class DataCard:
    """
    Parser and explorer for HuggingFace dataset metadata.

    The parsed structure uses Pydantic models with `extra="allow"` to accept
    arbitrary fields (like experimental_conditions) without requiring code
    changes.

    Key capabilities:
    - Parse dataset card YAML into structured objects
    - Navigate experimental conditions at 3 levels (top/config/field)
    - Explore field definitions and roles
    - Extract metadata schema for table design
    - Discover metadata relationships

    Example:
        >>> card = DataCard("BrentLab/harbison_2004")
        >>> # Use context manager for config exploration
        >>> with card.config("harbison_2004") as cfg:
        ...     # Get all experimental conditions
        ...     conds = cfg.experimental_conditions()
        ...     # Get condition fields with definitions
        ...     fields = cfg.condition_fields()
        ...     # Drill down into specific field
        ...     for name, info in fields.items():
        ...         for value, definition in info['definitions'].items():
        ...             print(f"{name}={value}: {definition}")

    Example (legacy API still supported):
        >>> card = DataCard("BrentLab/harbison_2004")
        >>> conditions = card.get_experimental_conditions("harbison_2004")
        >>> defs = card.get_field_definitions("harbison_2004", "condition")

    """

    def __init__(self, repo_id: str, token: str | None = None):
        """
        Initialize DataCard for a repository.

        :param repo_id: HuggingFace repository identifier (e.g., "user/dataset")
        :param token: Optional HuggingFace token for authentication

        """
        self.repo_id = repo_id
        self.token = token
        self.logger = logging.getLogger(self.__class__.__name__)

        # Initialize fetchers
        self._card_fetcher = HfDataCardFetcher(token=token)
        self._structure_fetcher = HfRepoStructureFetcher(token=token)
        self._size_fetcher = HfSizeInfoFetcher(token=token)

        # Cache for parsed card
        self._dataset_card: DatasetCard | None = None
        self._metadata_cache: dict[str, list[ExtractedMetadata]] = {}

    @property
    def dataset_card(self) -> DatasetCard:
        """Get the validated dataset card."""
        if self._dataset_card is None:
            self._load_and_validate_card()
        # this is here for type checking purposes. _load_and_validate_card()
        # will either set the _dataset_card or raise an error
        assert self._dataset_card is not None
        return self._dataset_card

    def _load_and_validate_card(self) -> None:
        """Load and validate the dataset card from HuggingFace."""
        try:
            self.logger.debug(f"Loading dataset card for {self.repo_id}")
            card_data = self._card_fetcher.fetch(self.repo_id)

            if not card_data:
                raise DataCardValidationError(
                    f"No dataset card found for {self.repo_id}"
                )

            # Validate using Pydantic model
            self._dataset_card = DatasetCard(**card_data)
            self.logger.debug(f"Successfully validated dataset card for {self.repo_id}")

        except ValidationError as e:
            # Create a more user-friendly error message
            error_details = []
            for error in e.errors():
                field_path = " -> ".join(str(x) for x in error["loc"])
                error_type = error["type"]
                error_msg = error["msg"]
                input_value = error.get("input", "N/A")

                if "dtype" in field_path and error_type == "string_type":
                    error_details.append(
                        f"Field '{field_path}': Expected a simple data type "
                        "string (like 'string', 'int64', 'float64') "
                        "but got a complex structure. This might be a categorical "
                        "field with class labels. "
                        f"Actual value: {input_value}"
                    )
                else:
                    error_details.append(
                        f"Field '{field_path}': {error_msg} (got: {input_value})"
                    )

            detailed_msg = (
                f"Dataset card validation failed for {self.repo_id}:\n"
                + "\n".join(f"  - {detail}" for detail in error_details)
            )
            self.logger.error(detailed_msg)
            raise DataCardValidationError(detailed_msg) from e
        except HfDataFetchError as e:
            raise DataCardError(f"Failed to fetch dataset card: {e}") from e

    @property
    def configs(self) -> list[DatasetConfig]:
        """Get all dataset configurations."""
        return self.dataset_card.configs

    def get_config(self, config_name: str) -> DatasetConfig | None:
        """Get a specific configuration by name."""
        return self.dataset_card.get_config_by_name(config_name)

    def get_features(self, config_name: str) -> list[FeatureInfo]:
        """
        Get all feature definitions for a configuration.

        :param config_name: Configuration name
        :return: List of FeatureInfo objects
        :raises DataCardError: If config not found

        """
        config = self.get_config(config_name)
        if not config:
            raise DataCardError(f"Configuration '{config_name}' not found")

        return config.dataset_info.features

    def _extract_partition_values(
        self, config: DatasetConfig, field_name: str
    ) -> set[str]:
        """Extract values from partition structure."""
        if (
            not config.dataset_info.partitioning
            or not config.dataset_info.partitioning.enabled
        ):
            return set()

        partition_columns = config.dataset_info.partitioning.partition_by or []
        if field_name not in partition_columns:
            return set()

        try:
            # Get partition values from repository structure
            partition_values = self._structure_fetcher.get_partition_values(
                self.repo_id, field_name
            )
            return set(partition_values)
        except HfDataFetchError:
            self.logger.warning(f"Failed to extract partition values for {field_name}")
            return set()

    def get_metadata_relationships(
        self, refresh_cache: bool = False
    ) -> list[MetadataRelationship]:
        """
        Get relationships between data configs and their metadata.

        :param refresh_cache: If True, force refresh dataset card from remote

        """
        # Clear cached dataset card if refresh requested
        if refresh_cache:
            self._dataset_card = None

        relationships = []
        data_configs = self.dataset_card.get_data_configs()
        metadata_configs = self.dataset_card.get_metadata_configs()

        for data_config in data_configs:
            # Check for explicit applies_to relationships
            for meta_config in metadata_configs:
                if (
                    meta_config.applies_to
                    and data_config.config_name in meta_config.applies_to
                ):
                    relationships.append(
                        MetadataRelationship(
                            data_config=data_config.config_name,
                            metadata_config=meta_config.config_name,
                            relationship_type="explicit",
                        )
                    )

            # Check for embedded metadata (always runs regardless of
            # explicit relationships)
            if data_config.metadata_fields:
                relationships.append(
                    MetadataRelationship(
                        data_config=data_config.config_name,
                        metadata_config=f"{data_config.config_name}_embedded",
                        relationship_type="embedded",
                    )
                )

        return relationships

    def get_repository_info(self) -> dict[str, Any]:
        """Get general repository information."""
        card = self.dataset_card

        try:
            structure = self._structure_fetcher.fetch(self.repo_id)
            total_files = structure.get("total_files", 0)
            last_modified = structure.get("last_modified")
        except HfDataFetchError:
            total_files = None
            last_modified = None

        return {
            "repo_id": self.repo_id,
            "pretty_name": card.pretty_name,
            "license": card.license,
            "tags": card.tags,
            "language": card.language,
            "size_categories": card.size_categories,
            "num_configs": len(card.configs),
            "dataset_types": [config.dataset_type.value for config in card.configs],
            "total_files": total_files,
            "last_modified": last_modified,
            "has_default_config": self.dataset_card.get_default_config() is not None,
        }

    def extract_metadata_schema(self, config_name: str) -> dict[str, Any]:
        """
        Extract complete metadata schema for planning metadata table structure.

        This is the primary method for understanding what metadata is available and
        how to structure it into a metadata table. It consolidates information from
        all sources:

        - **Field roles**: Which fields are regulators, targets, conditions, etc.
        - **Top-level conditions**: Repo-wide conditions (constant for all samples)
        - **Config-level conditions**: Config-specific conditions
          (constant for this config)
        - **Field-level definitions**: Per-sample condition definitions

        The returned schema provides all the information needed to:
        1. Identify sample identifier fields (regulator_identifier, etc.)
        2. Determine which conditions are constant vs. variable
        3. Access condition definitions for creating flattened columns
        4. Plan metadata table structure

        :param config_name: Configuration name to extract schema for
        :return: Dict with comprehensive schema including:
            - regulator_fields: List of regulator identifier field names
            - target_fields: List of target identifier field names
            - condition_fields: List of experimental_condition field names
            - condition_definitions: Dict mapping field -> value -> definition
            - top_level_conditions: Dict of repo-wide conditions
            - config_level_conditions: Dict of config-specific conditions
        :raises DataCardError: If configuration not found

        Example:
            >>> schema = card.extract_metadata_schema('harbison_2004')
            >>> # Identify identifier fields
            >>> print(f"Regulator fields: {schema['regulator_fields']}")
            >>> # Check for constant conditions
            >>> if schema['top_level_conditions']:
            ...     print("Has repo-wide constant conditions")
            >>> # Get field-level definitions for metadata table
            >>> for field in schema['condition_fields']:
            ...     defs = schema['condition_definitions'][field]
            ...     print(f"{field} has {len(defs)} levels")

        """
        config = self.get_config(config_name)
        if not config:
            raise DataCardError(f"Configuration '{config_name}' not found")

        schema: dict[str, Any] = {
            "regulator_fields": [],  # Fields with role=regulator_identifier
            "target_fields": [],  # Fields with role=target_identifier
            "condition_fields": [],  # Fields with role=experimental_condition
            "condition_definitions": {},  # Field-level condition details
            "top_level_conditions": None,  # Repo-level conditions
            "config_level_conditions": None,  # Config-level conditions
        }

        for feature in config.dataset_info.features:
            if feature.role == "regulator_identifier":
                schema["regulator_fields"].append(feature.name)
            elif feature.role == "target_identifier":
                schema["target_fields"].append(feature.name)
            elif feature.role == "experimental_condition":
                schema["condition_fields"].append(feature.name)
                if feature.definitions:
                    schema["condition_definitions"][feature.name] = feature.definitions

        # Add top-level conditions (applies to all configs/samples)
        # Stored in model_extra as dict
        if self.dataset_card.model_extra:
            top_level = self.dataset_card.model_extra.get("experimental_conditions")
            if top_level:
                schema["top_level_conditions"] = top_level

        # Add config-level conditions (applies to this config's samples)
        # Stored in model_extra as dict
        if config.model_extra:
            config_level = config.model_extra.get("experimental_conditions")
            if config_level:
                schema["config_level_conditions"] = config_level

        return schema

    def get_experimental_conditions(
        self, config_name: str | None = None
    ) -> dict[str, Any]:
        """
        Get experimental conditions with proper hierarchy handling.

        This method enables drilling down into the experimental conditions hierarchy:
        - Top-level (repo-wide): Common to all configs/samples
        - Config-level: Specific to a config, common to its samples
        - Field-level: Per-sample variation (use get_field_definitions instead)

        Returns experimental conditions at the appropriate level:
        - If config_name is None: returns top-level (repo-wide) conditions only
        - If config_name is provided: returns merged (top + config) conditions

        All conditions are returned as flexible dicts that preserve the original
        YAML structure. Navigate nested dicts to access specific values.

        :param config_name: Optional config name. If provided, merges top
          and config levels
        :return: Dict of experimental conditions (empty dict if none defined)

        Example:
            >>> # Get top-level conditions
            >>> top = card.get_experimental_conditions()
            >>> temp = top.get('temperature_celsius', 30)
            >>>
            >>> # Get merged conditions for a config
            >>> merged = card.get_experimental_conditions('config_name')
            >>> media = merged.get('media', {})
            >>> media_name = media.get('name', 'unspecified')

        """
        # Get top-level conditions (stored in model_extra)
        top_level = (
            self.dataset_card.model_extra.get("experimental_conditions", {})
            if self.dataset_card.model_extra
            else {}
        )

        # If no config specified, return top-level only
        if config_name is None:
            return top_level.copy() if isinstance(top_level, dict) else {}

        # Get config-level conditions
        config = self.get_config(config_name)
        if not config:
            raise DataCardError(f"Configuration '{config_name}' not found")

        config_level = (
            config.model_extra.get("experimental_conditions", {})
            if config.model_extra
            else {}
        )

        # Merge: config-level overrides top-level
        merged = {}
        if isinstance(top_level, dict):
            merged.update(top_level)
        if isinstance(config_level, dict):
            merged.update(config_level)

        return merged

    def get_field_definitions(
        self, config_name: str, field_name: str
    ) -> dict[str, Any]:
        """
        Get definitions for a specific field (field-level conditions).

        This is the third level of the experimental conditions hierarchy - conditions
        that vary per sample. Returns a dict mapping each possible field value to its
        detailed specification.

        For fields with role=experimental_condition, the definitions typically include
        nested structures like media composition, temperature, treatments, etc. that
        define what each categorical value means experimentally.

        :param config_name: Configuration name
        :param field_name: Field name (typically has role=experimental_condition)
        :return: Dict mapping field values to their definition dicts
          (empty if no definitions)
        :raises DataCardError: If config or field not found

        Example:
            >>> # Get condition definitions
            >>> defs = card.get_field_definitions('harbison_2004', 'condition')
            >>> # defs = {'YPD': {...}, 'HEAT': {...}, ...}
            >>>
            >>> # Drill down into a specific condition
            >>> ypd = defs['YPD']
            >>> env_conds = ypd.get('environmental_conditions', {})
            >>> media = env_conds.get('media', {})
            >>> media_name = media.get('name')

        """
        config = self.get_config(config_name)
        if not config:
            raise DataCardError(f"Configuration '{config_name}' not found")

        # Find the feature
        feature = None
        for f in config.dataset_info.features:
            if f.name == field_name:
                feature = f
                break

        if not feature:
            raise DataCardError(
                f"Field '{field_name}' not found in config '{config_name}'"
            )

        # Return definitions if present, otherwise empty dict
        return feature.definitions if feature.definitions else {}

    def summary(self) -> str:
        """Get a human-readable summary of the dataset."""
        card = self.dataset_card
        info = self.get_repository_info()

        lines = [
            f"Dataset: {card.pretty_name or self.repo_id}",
            f"Repository: {self.repo_id}",
            f"License: {card.license or 'Not specified'}",
            f"Configurations: {len(card.configs)}",
            f"Dataset Types: {', '.join(info['dataset_types'])}",
        ]

        if card.tags:
            lines.append(f"Tags: {', '.join(card.tags)}")

        # Add config summaries
        lines.append("\nConfigurations:")
        for config in card.configs:
            default_mark = " (default)" if config.default else ""
            lines.append(
                f"  - {config.config_name}: {config.dataset_type.value}{default_mark}"
            )
            lines.append(f"    {config.description}")

        return "\n".join(lines)

configs property

Get all dataset configurations.

dataset_card property

Get the validated dataset card.

__init__(repo_id, token=None)

Initialize DataCard for a repository.

Parameters:

Name Type Description Default
repo_id str

HuggingFace repository identifier (e.g., “user/dataset”)

required
token str | None

Optional HuggingFace token for authentication

None
Source code in tfbpapi/datacard.py
def __init__(self, repo_id: str, token: str | None = None):
    """
    Initialize DataCard for a repository.

    :param repo_id: HuggingFace repository identifier (e.g., "user/dataset")
    :param token: Optional HuggingFace token for authentication

    """
    self.repo_id = repo_id
    self.token = token
    self.logger = logging.getLogger(self.__class__.__name__)

    # Initialize fetchers
    self._card_fetcher = HfDataCardFetcher(token=token)
    self._structure_fetcher = HfRepoStructureFetcher(token=token)
    self._size_fetcher = HfSizeInfoFetcher(token=token)

    # Cache for parsed card
    self._dataset_card: DatasetCard | None = None
    self._metadata_cache: dict[str, list[ExtractedMetadata]] = {}

extract_metadata_schema(config_name)

Extract complete metadata schema for planning metadata table structure.

This is the primary method for understanding what metadata is available and how to structure it into a metadata table. It consolidates information from all sources:

  • Field roles: Which fields are regulators, targets, conditions, etc.
  • Top-level conditions: Repo-wide conditions (constant for all samples)
  • Config-level conditions: Config-specific conditions (constant for this config)
  • Field-level definitions: Per-sample condition definitions

The returned schema provides all the information needed to: 1. Identify sample identifier fields (regulator_identifier, etc.) 2. Determine which conditions are constant vs. variable 3. Access condition definitions for creating flattened columns 4. Plan metadata table structure

Parameters:

Name Type Description Default
config_name str

Configuration name to extract schema for

required

Returns:

Type Description
dict[str, Any]

Dict with comprehensive schema including: - regulator_fields: List of regulator identifier field names - target_fields: List of target identifier field names - condition_fields: List of experimental_condition field names - condition_definitions: Dict mapping field -> value -> definition - top_level_conditions: Dict of repo-wide conditions - config_level_conditions: Dict of config-specific conditions

Raises:

Type Description
DataCardError

If configuration not found Example: >>> schema = card.extract_metadata_schema(‘harbison_2004’) >>> # Identify identifier fields >>> print(f”Regulator fields: {schema[‘regulator_fields’]}”) >>> # Check for constant conditions >>> if schema[‘top_level_conditions’]: … print(“Has repo-wide constant conditions”) >>> # Get field-level definitions for metadata table >>> for field in schema[‘condition_fields’]: … defs = schema[‘condition_definitions’][field] … print(f”{field} has {len(defs)} levels”)

Source code in tfbpapi/datacard.py
def extract_metadata_schema(self, config_name: str) -> dict[str, Any]:
    """
    Extract complete metadata schema for planning metadata table structure.

    This is the primary method for understanding what metadata is available and
    how to structure it into a metadata table. It consolidates information from
    all sources:

    - **Field roles**: Which fields are regulators, targets, conditions, etc.
    - **Top-level conditions**: Repo-wide conditions (constant for all samples)
    - **Config-level conditions**: Config-specific conditions
      (constant for this config)
    - **Field-level definitions**: Per-sample condition definitions

    The returned schema provides all the information needed to:
    1. Identify sample identifier fields (regulator_identifier, etc.)
    2. Determine which conditions are constant vs. variable
    3. Access condition definitions for creating flattened columns
    4. Plan metadata table structure

    :param config_name: Configuration name to extract schema for
    :return: Dict with comprehensive schema including:
        - regulator_fields: List of regulator identifier field names
        - target_fields: List of target identifier field names
        - condition_fields: List of experimental_condition field names
        - condition_definitions: Dict mapping field -> value -> definition
        - top_level_conditions: Dict of repo-wide conditions
        - config_level_conditions: Dict of config-specific conditions
    :raises DataCardError: If configuration not found

    Example:
        >>> schema = card.extract_metadata_schema('harbison_2004')
        >>> # Identify identifier fields
        >>> print(f"Regulator fields: {schema['regulator_fields']}")
        >>> # Check for constant conditions
        >>> if schema['top_level_conditions']:
        ...     print("Has repo-wide constant conditions")
        >>> # Get field-level definitions for metadata table
        >>> for field in schema['condition_fields']:
        ...     defs = schema['condition_definitions'][field]
        ...     print(f"{field} has {len(defs)} levels")

    """
    config = self.get_config(config_name)
    if not config:
        raise DataCardError(f"Configuration '{config_name}' not found")

    schema: dict[str, Any] = {
        "regulator_fields": [],  # Fields with role=regulator_identifier
        "target_fields": [],  # Fields with role=target_identifier
        "condition_fields": [],  # Fields with role=experimental_condition
        "condition_definitions": {},  # Field-level condition details
        "top_level_conditions": None,  # Repo-level conditions
        "config_level_conditions": None,  # Config-level conditions
    }

    for feature in config.dataset_info.features:
        if feature.role == "regulator_identifier":
            schema["regulator_fields"].append(feature.name)
        elif feature.role == "target_identifier":
            schema["target_fields"].append(feature.name)
        elif feature.role == "experimental_condition":
            schema["condition_fields"].append(feature.name)
            if feature.definitions:
                schema["condition_definitions"][feature.name] = feature.definitions

    # Add top-level conditions (applies to all configs/samples)
    # Stored in model_extra as dict
    if self.dataset_card.model_extra:
        top_level = self.dataset_card.model_extra.get("experimental_conditions")
        if top_level:
            schema["top_level_conditions"] = top_level

    # Add config-level conditions (applies to this config's samples)
    # Stored in model_extra as dict
    if config.model_extra:
        config_level = config.model_extra.get("experimental_conditions")
        if config_level:
            schema["config_level_conditions"] = config_level

    return schema

get_config(config_name)

Get a specific configuration by name.

Source code in tfbpapi/datacard.py
def get_config(self, config_name: str) -> DatasetConfig | None:
    """Get a specific configuration by name."""
    return self.dataset_card.get_config_by_name(config_name)

get_experimental_conditions(config_name=None)

Get experimental conditions with proper hierarchy handling.

This method enables drilling down into the experimental conditions hierarchy: - Top-level (repo-wide): Common to all configs/samples - Config-level: Specific to a config, common to its samples - Field-level: Per-sample variation (use get_field_definitions instead)

Returns experimental conditions at the appropriate level: - If config_name is None: returns top-level (repo-wide) conditions only - If config_name is provided: returns merged (top + config) conditions

All conditions are returned as flexible dicts that preserve the original YAML structure. Navigate nested dicts to access specific values.

Parameters:

Name Type Description Default
config_name str | None

Optional config name. If provided, merges top and config levels

None

Returns:

Type Description
dict[str, Any]

Dict of experimental conditions (empty dict if none defined) Example: >>> # Get top-level conditions >>> top = card.get_experimental_conditions() >>> temp = top.get(‘temperature_celsius’, 30) >>> >>> # Get merged conditions for a config >>> merged = card.get_experimental_conditions(‘config_name’) >>> media = merged.get(‘media’, {}) >>> media_name = media.get(‘name’, ‘unspecified’)

Source code in tfbpapi/datacard.py
def get_experimental_conditions(
    self, config_name: str | None = None
) -> dict[str, Any]:
    """
    Get experimental conditions with proper hierarchy handling.

    This method enables drilling down into the experimental conditions hierarchy:
    - Top-level (repo-wide): Common to all configs/samples
    - Config-level: Specific to a config, common to its samples
    - Field-level: Per-sample variation (use get_field_definitions instead)

    Returns experimental conditions at the appropriate level:
    - If config_name is None: returns top-level (repo-wide) conditions only
    - If config_name is provided: returns merged (top + config) conditions

    All conditions are returned as flexible dicts that preserve the original
    YAML structure. Navigate nested dicts to access specific values.

    :param config_name: Optional config name. If provided, merges top
      and config levels
    :return: Dict of experimental conditions (empty dict if none defined)

    Example:
        >>> # Get top-level conditions
        >>> top = card.get_experimental_conditions()
        >>> temp = top.get('temperature_celsius', 30)
        >>>
        >>> # Get merged conditions for a config
        >>> merged = card.get_experimental_conditions('config_name')
        >>> media = merged.get('media', {})
        >>> media_name = media.get('name', 'unspecified')

    """
    # Get top-level conditions (stored in model_extra)
    top_level = (
        self.dataset_card.model_extra.get("experimental_conditions", {})
        if self.dataset_card.model_extra
        else {}
    )

    # If no config specified, return top-level only
    if config_name is None:
        return top_level.copy() if isinstance(top_level, dict) else {}

    # Get config-level conditions
    config = self.get_config(config_name)
    if not config:
        raise DataCardError(f"Configuration '{config_name}' not found")

    config_level = (
        config.model_extra.get("experimental_conditions", {})
        if config.model_extra
        else {}
    )

    # Merge: config-level overrides top-level
    merged = {}
    if isinstance(top_level, dict):
        merged.update(top_level)
    if isinstance(config_level, dict):
        merged.update(config_level)

    return merged

get_features(config_name)

Get all feature definitions for a configuration.

Parameters:

Name Type Description Default
config_name str

Configuration name

required

Returns:

Type Description
list[FeatureInfo]

List of FeatureInfo objects

Raises:

Type Description
DataCardError

If config not found

Source code in tfbpapi/datacard.py
def get_features(self, config_name: str) -> list[FeatureInfo]:
    """
    Get all feature definitions for a configuration.

    :param config_name: Configuration name
    :return: List of FeatureInfo objects
    :raises DataCardError: If config not found

    """
    config = self.get_config(config_name)
    if not config:
        raise DataCardError(f"Configuration '{config_name}' not found")

    return config.dataset_info.features

get_field_definitions(config_name, field_name)

Get definitions for a specific field (field-level conditions).

This is the third level of the experimental conditions hierarchy - conditions that vary per sample. Returns a dict mapping each possible field value to its detailed specification.

For fields with role=experimental_condition, the definitions typically include nested structures like media composition, temperature, treatments, etc. that define what each categorical value means experimentally.

Parameters:

Name Type Description Default
config_name str

Configuration name

required
field_name str

Field name (typically has role=experimental_condition)

required

Returns:

Type Description
dict[str, Any]

Dict mapping field values to their definition dicts (empty if no definitions)

Raises:

Type Description
DataCardError

If config or field not found Example: >>> # Get condition definitions >>> defs = card.get_field_definitions(‘harbison_2004’, ‘condition’) >>> # defs = {‘YPD’: {…}, ‘HEAT’: {…}, …} >>> >>> # Drill down into a specific condition >>> ypd = defs[‘YPD’] >>> env_conds = ypd.get(‘environmental_conditions’, {}) >>> media = env_conds.get(‘media’, {}) >>> media_name = media.get(‘name’)

Source code in tfbpapi/datacard.py
def get_field_definitions(
    self, config_name: str, field_name: str
) -> dict[str, Any]:
    """
    Get definitions for a specific field (field-level conditions).

    This is the third level of the experimental conditions hierarchy - conditions
    that vary per sample. Returns a dict mapping each possible field value to its
    detailed specification.

    For fields with role=experimental_condition, the definitions typically include
    nested structures like media composition, temperature, treatments, etc. that
    define what each categorical value means experimentally.

    :param config_name: Configuration name
    :param field_name: Field name (typically has role=experimental_condition)
    :return: Dict mapping field values to their definition dicts
      (empty if no definitions)
    :raises DataCardError: If config or field not found

    Example:
        >>> # Get condition definitions
        >>> defs = card.get_field_definitions('harbison_2004', 'condition')
        >>> # defs = {'YPD': {...}, 'HEAT': {...}, ...}
        >>>
        >>> # Drill down into a specific condition
        >>> ypd = defs['YPD']
        >>> env_conds = ypd.get('environmental_conditions', {})
        >>> media = env_conds.get('media', {})
        >>> media_name = media.get('name')

    """
    config = self.get_config(config_name)
    if not config:
        raise DataCardError(f"Configuration '{config_name}' not found")

    # Find the feature
    feature = None
    for f in config.dataset_info.features:
        if f.name == field_name:
            feature = f
            break

    if not feature:
        raise DataCardError(
            f"Field '{field_name}' not found in config '{config_name}'"
        )

    # Return definitions if present, otherwise empty dict
    return feature.definitions if feature.definitions else {}

get_metadata_relationships(refresh_cache=False)

Get relationships between data configs and their metadata.

Parameters:

Name Type Description Default
refresh_cache bool

If True, force refresh dataset card from remote

False
Source code in tfbpapi/datacard.py
def get_metadata_relationships(
    self, refresh_cache: bool = False
) -> list[MetadataRelationship]:
    """
    Get relationships between data configs and their metadata.

    :param refresh_cache: If True, force refresh dataset card from remote

    """
    # Clear cached dataset card if refresh requested
    if refresh_cache:
        self._dataset_card = None

    relationships = []
    data_configs = self.dataset_card.get_data_configs()
    metadata_configs = self.dataset_card.get_metadata_configs()

    for data_config in data_configs:
        # Check for explicit applies_to relationships
        for meta_config in metadata_configs:
            if (
                meta_config.applies_to
                and data_config.config_name in meta_config.applies_to
            ):
                relationships.append(
                    MetadataRelationship(
                        data_config=data_config.config_name,
                        metadata_config=meta_config.config_name,
                        relationship_type="explicit",
                    )
                )

        # Check for embedded metadata (always runs regardless of
        # explicit relationships)
        if data_config.metadata_fields:
            relationships.append(
                MetadataRelationship(
                    data_config=data_config.config_name,
                    metadata_config=f"{data_config.config_name}_embedded",
                    relationship_type="embedded",
                )
            )

    return relationships

get_repository_info()

Get general repository information.

Source code in tfbpapi/datacard.py
def get_repository_info(self) -> dict[str, Any]:
    """Get general repository information."""
    card = self.dataset_card

    try:
        structure = self._structure_fetcher.fetch(self.repo_id)
        total_files = structure.get("total_files", 0)
        last_modified = structure.get("last_modified")
    except HfDataFetchError:
        total_files = None
        last_modified = None

    return {
        "repo_id": self.repo_id,
        "pretty_name": card.pretty_name,
        "license": card.license,
        "tags": card.tags,
        "language": card.language,
        "size_categories": card.size_categories,
        "num_configs": len(card.configs),
        "dataset_types": [config.dataset_type.value for config in card.configs],
        "total_files": total_files,
        "last_modified": last_modified,
        "has_default_config": self.dataset_card.get_default_config() is not None,
    }

summary()

Get a human-readable summary of the dataset.

Source code in tfbpapi/datacard.py
def summary(self) -> str:
    """Get a human-readable summary of the dataset."""
    card = self.dataset_card
    info = self.get_repository_info()

    lines = [
        f"Dataset: {card.pretty_name or self.repo_id}",
        f"Repository: {self.repo_id}",
        f"License: {card.license or 'Not specified'}",
        f"Configurations: {len(card.configs)}",
        f"Dataset Types: {', '.join(info['dataset_types'])}",
    ]

    if card.tags:
        lines.append(f"Tags: {', '.join(card.tags)}")

    # Add config summaries
    lines.append("\nConfigurations:")
    for config in card.configs:
        default_mark = " (default)" if config.default else ""
        lines.append(
            f"  - {config.config_name}: {config.dataset_type.value}{default_mark}"
        )
        lines.append(f"    {config.description}")

    return "\n".join(lines)