DataCard¶
tfbpapi.datacard.DataCard
¶
Parser and explorer for HuggingFace dataset metadata.
The parsed structure uses Pydantic models with extra="allow" to accept
arbitrary fields (like experimental_conditions) without requiring code
changes.
Key capabilities: - Parse dataset card YAML into structured objects - Navigate experimental conditions at 3 levels (top/config/field) - Explore field definitions and roles - Extract metadata schema for table design - Discover metadata relationships
Example: >>> card = DataCard(“BrentLab/harbison_2004”) >>> # Use context manager for config exploration >>> with card.config(“harbison_2004”) as cfg: … # Get all experimental conditions … conds = cfg.experimental_conditions() … # Get condition fields with definitions … fields = cfg.condition_fields() … # Drill down into specific field … for name, info in fields.items(): … for value, definition in info[‘definitions’].items(): … print(f”{name}={value}: {definition}”)
Example (legacy API still supported): >>> card = DataCard(“BrentLab/harbison_2004”) >>> conditions = card.get_experimental_conditions(“harbison_2004”) >>> defs = card.get_field_definitions(“harbison_2004”, “condition”)
Source code in tfbpapi/datacard.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 | |
configs
property
¶
Get all dataset configurations.
dataset_card
property
¶
Get the validated dataset card.
__init__(repo_id, token=None)
¶
Initialize DataCard for a repository.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
repo_id
|
str
|
HuggingFace repository identifier (e.g., “user/dataset”) |
required |
token
|
str | None
|
Optional HuggingFace token for authentication |
None
|
Source code in tfbpapi/datacard.py
extract_metadata_schema(config_name)
¶
Extract complete metadata schema for planning metadata table structure.
This is the primary method for understanding what metadata is available and how to structure it into a metadata table. It consolidates information from all sources:
- Field roles: Which fields are regulators, targets, conditions, etc.
- Top-level conditions: Repo-wide conditions (constant for all samples)
- Config-level conditions: Config-specific conditions (constant for this config)
- Field-level definitions: Per-sample condition definitions
The returned schema provides all the information needed to: 1. Identify sample identifier fields (regulator_identifier, etc.) 2. Determine which conditions are constant vs. variable 3. Access condition definitions for creating flattened columns 4. Plan metadata table structure
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config_name
|
str
|
Configuration name to extract schema for |
required |
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dict with comprehensive schema including: - regulator_fields: List of regulator identifier field names - target_fields: List of target identifier field names - condition_fields: List of experimental_condition field names - condition_definitions: Dict mapping field -> value -> definition - top_level_conditions: Dict of repo-wide conditions - config_level_conditions: Dict of config-specific conditions |
Raises:
| Type | Description |
|---|---|
DataCardError
|
If configuration not found Example: >>> schema = card.extract_metadata_schema(‘harbison_2004’) >>> # Identify identifier fields >>> print(f”Regulator fields: {schema[‘regulator_fields’]}”) >>> # Check for constant conditions >>> if schema[‘top_level_conditions’]: … print(“Has repo-wide constant conditions”) >>> # Get field-level definitions for metadata table >>> for field in schema[‘condition_fields’]: … defs = schema[‘condition_definitions’][field] … print(f”{field} has {len(defs)} levels”) |
Source code in tfbpapi/datacard.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | |
get_config(config_name)
¶
get_experimental_conditions(config_name=None)
¶
Get experimental conditions with proper hierarchy handling.
This method enables drilling down into the experimental conditions hierarchy: - Top-level (repo-wide): Common to all configs/samples - Config-level: Specific to a config, common to its samples - Field-level: Per-sample variation (use get_field_definitions instead)
Returns experimental conditions at the appropriate level: - If config_name is None: returns top-level (repo-wide) conditions only - If config_name is provided: returns merged (top + config) conditions
All conditions are returned as flexible dicts that preserve the original YAML structure. Navigate nested dicts to access specific values.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config_name
|
str | None
|
Optional config name. If provided, merges top and config levels |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dict of experimental conditions (empty dict if none defined) Example: >>> # Get top-level conditions >>> top = card.get_experimental_conditions() >>> temp = top.get(‘temperature_celsius’, 30) >>> >>> # Get merged conditions for a config >>> merged = card.get_experimental_conditions(‘config_name’) >>> media = merged.get(‘media’, {}) >>> media_name = media.get(‘name’, ‘unspecified’) |
Source code in tfbpapi/datacard.py
get_features(config_name)
¶
Get all feature definitions for a configuration.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config_name
|
str
|
Configuration name |
required |
Returns:
| Type | Description |
|---|---|
list[FeatureInfo]
|
List of FeatureInfo objects |
Raises:
| Type | Description |
|---|---|
DataCardError
|
If config not found |
Source code in tfbpapi/datacard.py
get_field_definitions(config_name, field_name)
¶
Get definitions for a specific field (field-level conditions).
This is the third level of the experimental conditions hierarchy - conditions that vary per sample. Returns a dict mapping each possible field value to its detailed specification.
For fields with role=experimental_condition, the definitions typically include nested structures like media composition, temperature, treatments, etc. that define what each categorical value means experimentally.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config_name
|
str
|
Configuration name |
required |
field_name
|
str
|
Field name (typically has role=experimental_condition) |
required |
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dict mapping field values to their definition dicts (empty if no definitions) |
Raises:
| Type | Description |
|---|---|
DataCardError
|
If config or field not found Example: >>> # Get condition definitions >>> defs = card.get_field_definitions(‘harbison_2004’, ‘condition’) >>> # defs = {‘YPD’: {…}, ‘HEAT’: {…}, …} >>> >>> # Drill down into a specific condition >>> ypd = defs[‘YPD’] >>> env_conds = ypd.get(‘environmental_conditions’, {}) >>> media = env_conds.get(‘media’, {}) >>> media_name = media.get(‘name’) |
Source code in tfbpapi/datacard.py
get_metadata_relationships(refresh_cache=False)
¶
Get relationships between data configs and their metadata.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
refresh_cache
|
bool
|
If True, force refresh dataset card from remote |
False
|
Source code in tfbpapi/datacard.py
get_repository_info()
¶
Get general repository information.
Source code in tfbpapi/datacard.py
summary()
¶
Get a human-readable summary of the dataset.